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I. INTRODUCTION

Cosmological ination postulates that there was a period in the very early universe in

which the expansion of the universe was accelerating, so that the universe evolved toward

its currently observed state of atness and homogeneity on large scales. Ination was �rst

proposed by Guth in 1981 [1], and has since been incorporated into a wide variety of mod-

els. Typical ination models involve a single scalar �eld displaced from the minimum of

a potential, creating a nonzero vacuum energy which dominates the stress-energy of the

universe. This in turn leads to quasi-exponential expansion. Ination ends when the scalar

�eld relaxes to the minimum of the potential and the vacuum energy decays via particle

production, resulting in massive production of entropy. The equations of motion for the

�eld are not in general analytically solvable, and approximate methods are required. By far

the most widely used approximation is so-called slow-roll [2,3], in which the evolution of the

�eld is assumed to be strongly dominated by drag from the cosmological expansion. The

slow-roll approximation not only allows analytic solution of the equation of motion of the

�eld, but also makes possible an accurate characterization of quantum uctuations in the

�eld. In the ination scenario, quantum uctuations are responsible for the creation of small

density perturbations in the early universe. These primordial perturbations act as seeds for

structure formation, and are directly observable as temperature uctuations in the Cosmic

Microwave Background (CMB) radiation.

Slow-roll is not, however, the only possibility for successfully implementing models of

ination, and solutions outside the slow-roll approximation have been found in particular

situations [4,5]. In this paper I discuss a general approach to �nding inationary solutions

outside the slow-roll approximation, based on the idea of treating the equation of state of the

scalar �eld matter as the fundamental quantity in the dynamical equations, as opposed to the

�eld itself. Such an approach is closely related to the Hamilton-Jacobi formalism, in which

the expansion rate is treated as the dynamical variable. A non-slow-roll solution is useful for

calculating the end of ination in models with \inverted" potentials, V (�) = �4 [1� (�=�)
p
].
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In these models, slow-roll is a good approximation early on in ination, �� �, but breaks

down well before the end of ination. I also apply the formalism to the more complicated

case of hybrid ination, in which the slow-roll approximation breaks down at all points in

the evolution of the scalar �eld. (Non-slow-roll solutions in hybrid ination were studied

recently by Garc��a-Bellido and Wands [5]; I derive an equivalent result.) Finally, I discuss

the general question of calculating the amplitude of metric uctuations outside the slow-roll

approximation, and derive an analytic solution for the hybrid case.

II. THE HAMILTON-JACOBI FORMALISM

In this section I review the basics of scalar �eld dynamics in inationary cosmology with

emphasis on the very useful Hamilton Jacobi formalism [6{8]. The emphasis is pedagogical;

a more formal review can be found in Ref. [9]. The �rst basic ingredient is a cosmological

metric, which I shall take to be of the at Robertson-Walker form

ds2 = dt2 � a2 (t) jdxj2 = a2 (� )
h
d� 2 � jdxj2

i
: (1)

The quantity � is the conformal time, with dt = ad� . The second ingredient is a spatially

homogenous scalar �eld � with potential V (�) and equation of motion

��+ 3H _� + V 0 (�) = 0; (2)

where the Hubble parameter H is de�ned as

H �
�
_a

a

�
: (3)

An overdot denotes a derivative with respect to the coordinate time t. If the stress-energy of

the universe is dominated by the scalar �eld �, the Einstein �eld equations for the evolution

of the background metric, G�� = 8�GT��, can be written as

H2 =

�
_a

a

�2
=

2

3�2

�
V (�) +

1

2
_�2
�
; (4)

and
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�
�a

a

�
=

2

3�2

h
V (�)� _�2

i
: (5)

The constant � is de�ned as

�2 � m2
P l

4�
; (6)

where mP l = G�1=2 ' 1019GeV is the Planck mass. These background equations, along

with the equation of motion (2), form a coupled set of di�erential equations describing the

evolution of the universe. The fundamental quantities to be calculated are � (t) and a (t),

and the potential V (�) is input from some model. Ination is de�ned to be a period of

accelerated expansion,

�
�a

a

�
> 0; (7)

indicating an equation of state in which vacuum energy dominates over the kinetic energy

of the �eld, _�2 < V (�). In the limit that _� = 0, the expansion of the universe is of the de

Sitter form, with the scale factor increasing exponentially in time

H =

s�
2

3�2

�
V (�) = const:;

a / eHt: (8)

Note that with the Hubble distance H�1 constant and the scale factor increasing exponen-

tially, comoving length scales initially smaller than the horizon are rapidly redshifted outside

the horizon. In general, the Hubble parameter H will not be exactly constant, but will vary

as the �eld � evolves along the potential V (�). A convenient approach to the more general

case is to express the Hubble parameter directly as a function of the �eld � instead of as a

function of time, H = H (�). This is consistent as long as t is a single-valued function of �.

Di�erentiating Eq. (4) with respect to time,

2H (�)H 0 (�) _� =

�
2

3�2

� h
V 0 (�) + ��

i
_�

= �
�
2

�2

�
H (�) _�2; (9)
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The equation of motion (2) was used to simplify the right hand side. Substituting back into

the de�nition of H in Eq. (4) results in the system of two �rst-order equations

_� = ��2H 0 (�) ;

[H 0 (�)]
2 � 3

�2
H2 (�) = � 2

�4
V (�) : (10)

These equations are completely equivalent to the second-order equation of motion (2). The

second of these is referred to as the Hamilton-Jacobi equation, and can be written in the

useful form

H2 (�)

�
1� 1

3
� (�)

�
=

�
2

3�2

�
V (�) ; (11)

where the parameter � is de�ned as

� � �2
 
H 0 (�)

H (�)

!2
: (12)

The physical meaning of the parameter � can be seen by expressing Eq. (5) as

�
�a

a

�
= H2 (�) [1� � (�)] ; (13)

so that the condition for ination (7) is given simply by � < 1. Equivalently, � can be viewed

as parameterizing the equation of state of the scalar �eld matter, with the pressure p and

energy density � related as

p = �

�
2

3
�� 1

�
: (14)

The condition for ination � < 1 is the same as � + 3p < 0. The de Sitter case is � = 0, or

p = ��. The evolution of the scale factor is given by the general expression

a / exp

�Z t

t0

H dt

�
; (15)

where the number of e-folds N is de�ned to be

N �
Z t

t0

H dt =

Z �

�0

H

_�
d� = �1

�

Z �

�0

d�q
� (�)

: (16)
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It is conventional to take �0 to be the end of ination, with N increasing as one goes

backward in time. In what follows, it will be convenient to de�ne the additional parameters

[10,11]

� � �2
 
H 00 (�)

H (�)

!
= ��

�
�

2

�
�0p
�
; (17)

and

� � �2
 
H 0 (�)H 000 (�)

H2 (�)

!1=2
=
h
�� � �p��0

i1=2
: (18)

These are often referred to as slow-roll parameters. The sign ambiguity is a result of the

convention that
p
� is taken to always be positive, but H 0 (�) can be of either sign. The

sign is �xed by specifying the sign of _� in Eq. (10). The slow-roll approximation is the

assumption that the �eld evolution is dominated by drag from the expansion, �� ' 0, so that

_� is approximately constant and H (�) can be taken to vary as

H (�) =

s�
2

3�2

�
V [� (t)]; (19)

where � (t) satis�es

_� = � V 0 (�)

3H (�)
: (20)

This approximation is consistent as long as the �rst two derivatives of the potential are small

relative to its magnitude, V 0; V 00� V . The parameters � and � reduce in this limit to [12]

� =
�2

4

 
V 0 (�)

V (�)

!2
;

� =
�2

2

2
4V 00 (�)

V (�)
� 1

2

 
V 0 (�)

V (�)

!235 : (21)

The slow-roll limit can then be equivalently expressed as �; j�j � 1. These expressions are

frequently taken in the literature as de�nitions of the slow-roll parameters, but here they

are simply limits of the de�ning expressions (12) and (17).

In the next section, I discuss the question of �nding approximate solutions to the

Hamilton-Jacobi equations, with particular emphasis on solutions outside the range in which

slow-roll is a valid approximation.
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III. SOLVING THE HAMILTON-JACOBI EQUATION

Instead of treating the Hubble parameter H (�) as the fundamental quantity in the

Hamilton-Jacobi equation, it is convenient to use � (�), which amounts to directly solving

for the equation of state of the scalar �eld (14). The de�nition of �,

� (�) � �2
 
H 0 (�)

H (�)

!2
; (22)

can be viewed as a di�erential equation which can be inverted to obtain H (�), provided a

boundary condition is speci�ed. For the case of ination, the relevant boundary condition

is de Sitter expansion

� (�0) � 0 (23)

for some �eld value �0. From the de�nition of �, this is the same as saying H 0 (�) = 0, from

which it follows that �0 is a stationary point of the �eld:

_�j�=�0 = ��2H 0 (�0) = 0: (24)

Subject to this boundary condition, the Hubble parameter is then exactly

H (�) =

s
2

3�2
V (�0) exp

 
�1

�

Z �

�0

q
� (�0) d�0

!
: (25)

The sign ambiguity, as in the case of the slow-roll parameters, arises as a result of the

convention that
p
� is taken to always be positive. The Hamilton-Jacobi equation is then,

also exactly,

V (�)

V (�0)
= exp

 
�2

�

Z �

�0

q
� (�0) d�0

!�
1 � 1

3
� (�)

�
: (26)

This at �rst may appear to be a cumbersome form of the equation of motion, but it is in

fact straightforward to recover the standard slow-roll solution by making the approximation

1� 1

3
� (�) ' 1: (27)

The Hamilton-Jacobi equation reduces to
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Z �

�0

q
� (�0) d�0 ' ��

2
log

 
V (�)

V (�0)

!
; (28)

which is simply solved for �:

q
� (�) d� = ��

2
d [log V (�)] = ��

2

 
V 0 (�)

V (�)

!
d�; (29)

giving the usual slow-roll expression

� (�) =
�2

4

 
V 0 (�)

V (�)

!2
: (30)

The Hubble parameter H (�) is, from (25),

H (�) =

s�
2

3�2

�
V (�0) exp

 
�1

�

Z �

�0

q
� (�0) d�0

!

=

s�
2

3�2

�
V (�); (31)

consistent with the result obtained from directly substituting the approximation (27) into

Eq. (11). There is nothing new here: this is the standard slow-roll approximation, arrived

at in a somewhat unconventional way. However, the form of Eq. (26) is suggestive of a

natural extension of this approximation. In ination, when � < 1, the integral in Eq. (26)

satis�es the inequality

Z �

�0

q
� (�0) d�0 < �� �0: (32)

Then if the displacement of the �eld from its stationary value is small compared to the

Planck scale, �� �0 � �, the exponential can be expanded as

exp

 
�2

�

Z �

�0

q
� (�0) d�0

!
' 1 � 2

�

Z �

�0

q
� (�0) d�0; (33)

and the Hamilton-Jacobi equation becomes

V (�)

V (�0)
' 1 � 1

3
� (�)� 2

�

Z �

�0

q
� (�0) d�0: (34)

In the �!1 limit, this simpli�es directly to an expression for � (�),

� (�) = 3

 
1� V (�)

V (�0)

!
: (35)
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This is of a very di�erent form than the familiar slow-roll expression (30).

An immediate application of this solution can be found in calculating the end of ination

in models with a potential of the form

V (�) = �4

"
1�

 
�

�

!p#
; (36)

where the \width" of the potential is taken to be much smaller than the Planck scale,

� � �. In such models, the slow-roll approximation breaks down well before the end of

ination [13,14]. Choosing the boundary condition of _� = 0 at the origin, � (�0 � 0) = 0,

the solution (35) is an excellent approximation outside the regime in which slow-roll is valid,

with

� (�) = 3

 
�

�

!p
: (37)

The end of ination is then at �END such that � (�END) � 1, and

 
�END

�

!
=

�
1

3

�1=p
: (38)

This can be compared to the slow-roll result

 
�END

�

!
=

 
2�

p�

!1=(p�1)
� 1: (39)

Using the slow-roll solution for � results in greatly underestimating the �eld value at which

ination ends. The breakdown of slow-roll can be seen by calculating the parameter � (17),

� = 3

 
�

�

!p
� p

p
3

2

 
�

�

! 
�

�

!p=2�1
; (40)

so that j�j becomes large before the end of ination, and slow-roll is a poor approximation.

However, at least for p > 2, the parameter j�j becomes small and slow-roll is valid for

� � �, which is the region of interest when calculating observable parameters such as the

spectrum of curvature uctuations. In the next section, I discuss the more complicated case

of hybrid ination, in which slow-roll breaks down in regions of interest for the calculation

of observable parameters.
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IV. APPLICATION TO HYBRID INFLATION

In this section, I apply the formalism outlined in Section III to the case of hybrid ination

[15{17], with a potential typically taken to be of the form

V (�; ) =

 
M2 �

p
�

2
 2
!2

+
1

2
m2�2 +

1

2
g�2 2: (41)

In the hybrid ination scenario, the inaton is the �eld �. The second �eld,  , has the

characteristic that its classical minimum depends on the value of the �eld �: for � small,  

has a minimum at  2 = 2M2=
p
�, but for � large, the minimum is at  = 0. The transition

between the two behaviors occurs at a critical value

�2c �
2M2

p
�

g
: (42)

For � > �c, the �eld  sits at the origin, and the potential has a nonzero vacuum energy

which drives ination. The �eld � is e�ectively the only degree of freedom, and the potential

reduces to

V (�) =M4 +
1

2
m2�2: (43)

At � = �c, the �eld  becomes unstable and ination ends. It is in principle possible for a

second phase of ination to occur as  evolves to its minimum, with physically interesting

results [18,19]. For simplicity, I restrict myself to the case where ination ends abruptly

at � = �c. In this case, it is consistent to ignore the second �eld altogether and simply

study the formal solutions using the potential (43). The appropriate inationary boundary

condition is such that _�! 0 as �! 0, or

H 0 (�0 � 0) = 0: (44)

This describes a situation in which the universe inates inde�nitely, with the �eld asymptot-

ically coming to rest at the origin. The true end of ination at �c then serves as an arbitrary

cuto�. The Hamilton-Jacobi equation (34) is, with the appropriate choice of sign reecting

_� < 0 for � > 0,
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2

�

Z �

0

q
� (�0) d�0 � 1

3
� (�) =

�
1

2

�
m2

M4
�2; (45)

with the simple solution

� (�) =

�
r�

�

�2
�2; (46)

where

r� �
3

2

2
41�

vuut1� 2

3

 
m2�2

M4

!35 : (47)

This is exactly the solution of Garc��a-Bellido and Wands [5], and I am adopting their sign

convention for r�. A similar solution for an \inverted" potential, with m2 ! �m2, was

obtained by Stewart and Lyth [4]. The parameter � is by de�nition positive, which results

in the condition

m2�2

M4
<

3

2
: (48)

(Parameter ranges that do not satisfy this condition lead to oscillatory solutions [5].) The

constant r� is easily seen to be just the �� � limit of the parameter � de�ned in Eq. (17),

� = �+

�
�

2

�
�0p
�

=

�
r�

�

�2
�2 + r�

' r�; (49)

so that � can be expressed simply as

� (�) = �2
 
�

�

!2
: (50)

The slow-roll limit is m��M2, where the parameter � reduces to

�SR = r+ '
1

2

 
m2�2

M4

!
: (51)

An expression for the evolution of the �eld � can be obtained by calculating the number of

e-folds of ination as the �eld evolves from � to some arbitrarily chosen �1:
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N =
1

�

Z �

�1

d�0q
� (�0)

=
1

�
ln

 
�

�1

!
; (52)

so that

� / e�N : (53)

The choice of �1 simply amounts to the de�nition of where the number of e-folds N vanishes,

with N > 0 for � > �1. Conventionally, this is taken to be the end of ination, �1 = �c. The

most general solution is a linear combination of � = r� modes, and the two solutions can

be interpreted as asymptotic limits of the �eld evolution. The late-time limit is � ! 0, or

N ! �1, and the asymptotic solution in this limit is � / exp (r+N). The solution � = r�

corresponds to the N ! +1 limit. It is to be expected that the late-time limit will be the

one of physical interest, since the �eld evolution always relaxes to this attractor after enough

ination has taken place. (One possible exception is the case in which the total amount of

ination is small, such as in \open" hybrid ination [20].)

In Ref. [5], Garc��a-Bellido and Wands calculate the spectrum of density uctuations in

the � = r+ limit, assuming that the gravitational backreaction of the �eld can be neglected.

In the next section, I calculate the spectrum of scalar density uctuations explicitly including

the gravitational backreaction, for both the limits � = r+ and � = r�.

V. DENSITY FLUCTUATIONS FAR FROM SLOW ROLL

The primary observational test of ination is observation of the Cosmic Microwave Back-

ground (CMB) radiation. Temperature uctuations in the CMB can be related to pertur-

bations in the metric at the surface of last scattering. In the ination scenario, metric

perturbations are created by �eld uctuations during ination [21{24]. During the ina-

tionary epoch, quantum uctuations on small scales are rapidly redshifted to scales much

larger than the horizon size. The metric perturbations created during ination are of two

types: scalar, or curvature perturbations, which couple to the stress-energy of matter in the

universe and form the \seeds" for structure formation, and tensor, or gravitational wave
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perturbations, which do not couple to matter. Both scalar and tensor perturbations con-

tribute to CMB anisotropy. Scalar uctuations can also be interpreted as uctuations in

the density of the matter in the universe. The power spectrum of curvature perturbations

is given by [25]

P
1=2
R (k) =

s
k3

2�2

����ukz
���� (54)

where k is a comoving wavenumber, and the mode function uk satis�es the di�erential

equation [4,26,27]

d2uk

d� 2
+

 
k2 � 1

z

d2z

d� 2

!
uk = 0: (55)

The quantity z is de�ned as

z � a _�

H
= ��ap�; (56)

and

1

z

d2z

d� 2
= 2a2H2

�
1 + �� 3

2
� + �2 � 2�� +

1

2
�2 +

1

2
�2
�
: (57)

Solutions to the second-order di�erential equation for the mode uk in general contain two

integration constants which can be taken to be phase and normalization. The phase is �xed

by the boundary condition that the mode be wavelike at short wavelengths relative to the

horizon size

uk / e�ik� ; k !1: (58)

The long wavelength limit, k ! 0, is just uk / z. Normalization is �xed by the canonical

quantization condition for the uctuations, which in terms of the uk is a Wronskian condition

u�k
duk

d�
� uk

du�k
d�

= �i: (59)

The usual method of obtaining solutions to the mode equation (55) is to solve for the

quantity (aH) as a function of the conformal time � . To do this, take the exact relation
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d� =
d (aH)

(aH)
2
(1 � �)

(60)

and integrate by parts:

� = � 1

(aH) (1 � �) +
Z
d (aH)

(aH)

d

d (aH)

�
1

1� �

�

= � 1

(aH) (1 � �) +
Z

2� (�� �)

(aH)
2
(1� �)

3 d (aH): (61)

In the limit of power-law ination, � = � = const:, the second integral in (61) vanishes, and

the conformal time is exactly

� = � 1

(aH) (1 � �)
: (62)

The mode equation (55) then becomes a Bessel equation, with the standard solution

uk /
p
�k�H� (�k� ) ; (63)

where H� is a Hankel function of the �rst kind, and

� =
3

2
+

�

1 � �
: (64)

The limit of de Sitter expansion is � ! 0, and this reduces to � = 3=2, which is the case

of a scale invariant spectrum P (k) / k. Thus, de Sitter expansion can be considered to be

a limiting case of power-law ination. The so-called \slow-roll expansion" is an expansion

in small parameters about the de Sitter limit. In cases where � 6= �, but both � and � are

small, the conformal time is given by the (now approximate) relation:

� ' � 1

(aH) (1� �)
' � 1

(aH)
(1 + �) : (65)

Note that despite the formal similarity between this and the power-law case, slow-roll in-

volves distinct assumptions, as has been pointed out recently by Grivell and Liddle [28]:

the slow-roll and power-law solutions are the same only in the de Sitter limit. Higher-order

corrections can be obtained by continuing the integration by parts,

� = � 1

(aH) (1� �)

"
1 +

2� (�� �)
(1 � �)

2 +O
�
��2
�
+ � � �

#
: (66)
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As long as this series converges, the conformal time is well-de�ned as a series in slow-roll

parameters. In the slow-roll approximation �; � � 1, it is consistent to take � and � to be

approximately constant, and the solutions are again Hankel functions of the form (63), with

� =
3

2
+ 2� � �; (67)

to �rst order in the slow-roll parameters.

However, the only necessary condition for ination is that � be smaller than unity. Deriva-

tives of �, in particular �, need not necessarily be small for an inationary solution to exist.

But for � 6= 0 and � > 1, the series (66) is not convergent and a new approach to solving the

mode equations is required. Instead of expressing the mode equation (55) as a di�erential

equation in the conformal time � , it is convenient to switch variables to the wavelength of

the uctuation mode relative to the horizon size,

y �
 
k

aH

!
'
 
dH

�

!
: (68)

Then

dy = �kd (aH)

(aH)
2 = �k (1� �) d�; (69)

and the mode equation (55) can be expressed exactly as

y2 (1� �)
2 d

2uk

dy2
+ 2y� (�� �) duk

dy
+
h
y2 � F (�; �; �)

i
uk = 0; (70)

where

F (�; �; �) � 2

�
1 + �� 3

2
� + �2 � 2�� +

1

2
�2 +

1

2
�2
�
: (71)

The approximately deSitter limit �� 1, � = const:� � is just the case of hybrid ination

considered in Section IV. In this case, the mode equation (70) reduces to

y2
d2uk

dy2
+
h
y2 �

�
2 + �2 � 3�

�i
uk = 0: (72)

The solution is again a Bessel function
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uk / y1=2H� (y)

� =
3

2
� �; (73)

in agreement with the calculation in Ref. [5]. This expression is the same as the �! 0 limit

in the slow roll case (67), although here no assumption of small � has been made. This

is to be expected, since for � exactly vanishing, the series (66) converges for any �. For �

nonzero but small, the series is asymptotic, and it is still a consistent approximation to take

y ' �k� as suggested by the di�erential relationship (69). Note in particular that � changes

sign when � = 3=2, which is equivalent to a change of phase in the solution. The phase of

the uctuation is set by the boundary condition (58), so the solutions � = �3=2 represent

physically the same uctuation mode. For the case of hybrid ination, the signi�cance of

the two solutions � = r� is now clear, since

� =
3

2
� � = �3

2

vuut1� 2

3

 
m2�2

M4

!
: (74)

The solutions � = r+ and � = r� produce identical uctuation modes, and the order of

the Hankel function can be taken to be � = j3=2 � �j without loss of generality. The mode

function normalized according to the condition (59) is

jukj =
1

2

r
�

k

���y1=2H� (y)
��� : (75)

In the long wavelength limit, y! 0, this reduces to

jukj ! 2��3=2
� (�)

� (3=2)

y��+1=2p
2k

; � �
����32 � �

���� : (76)

The normalized uctuation amplitude is conventionally evaluated at horizon crossing, y =

(k=aH) = 1, and is given by

P
1=2
R (k) =

2��3=2

2�

� (�)

� (3=2)

 
H

�
p
�

!�����
k=aH

=
2��3=2

2�

� (�)

� (3=2)

e��N

�

 
H

��c

!
; (77)

where N is the number of e-folds before the end of ination, evaluated at horizon crossing.

This is typically taken to be N ' 60. The scalar spectral index is
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n� 1 =
d lnPR

d ln k
= 2�: (78)

This answer reduces to the result in Ref. [5] in the limit � = r+ � 3=2, and con�rms the

consistency of neglecting the gravitational backreaction when calculating the power spectrum

of curvature perturbations. In the � = r� limit, the spectral index becomes large, n � 4,

which lies well outside the limits set by the Cosmic Background Explorer (COBE) satellite,

n = 1:2 � 0:3 [29,30]. Note that although the mode function uk is the same for both limits

� = r�, the background evolution is di�erent in the two limits, which leads to the di�erence

in the spectral index.

The situation is similar for the case of tensor uctuations. The tensor mode equation

can be written

d2vk

d� 2
+
h
k2 � a2H2 (2� �)

i
vk = 0; (79)

where the amplitude of the tensor metric perturbation is given by vk=a. In terms of the

variable y, this becomes

y2 (1 � �)
2 d

2vk

dy2
+ 2y� (�� �)

dvk

dy
+
h
y2 � (2� �)

i
vk = 0; (80)

which can be solved in a fashion similar to the scalar mode equation (70). However, in the

limit � ! 0, tensor uctuations become negligible relative to scalar uctuations, and I do

not consider them further here.

VI. CONCLUSIONS

In this paper, I have outlined a general way of approaching the problem of ination

beyond the slow-roll approximation. In this approach, the fundamental quantity is the

parameter � (�), which characterizes the equation of state of the scalar �eld matter, p =

� (2�=3 � 1). The Hamilton-Jacobi equation for the evolution of a scalar �eld in ination

can be written in the exact form
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V (�)

V (�0)
= exp

 
�2

�

Z �

�0

q
� (�0) d�0

!�
1 � 1

3
� (�)

�
; (81)

where �0 is a boundary value such that � (�0) � 0. In this formulation, the standard slow-roll

approximation corresponds to taking 1� �=3 ' 1, where the solution is the usual expression

�SR =
�2

4

 
V 0 (�)

V (�)

!2
: (82)

This is often taken as the de�nition of the parameter �. However, in the limit � � �0 � �,

a general non-slow-roll solution exists,

� = 3

 
1 � V (�)

V (�0)

!
: (83)

This expression is useful, for instance, for accurate calculation of the end of ination in

models with \inverted" potentials, V = �4 [1� (�=�)
p
], where the slow-roll approximation

gives poor results.

I apply the general formalism to the interesting example of hybrid ination, with a

potential of the form

V (�) =M4 +
1

2
m2�2: (84)

I derive a solution to the background �eld equations equivalent to that obtained by Garc��a-

Bellido and Wands [5],

� = �2�2;

� / e�N ; (85)

where N is the number of e-folds of ination, and the parameter � is given by

� � �2
 
H 0 (�)

H (�)

!2
=

3

2

2
41 �

vuut1 � 2

3

 
m2�2

M4

!35 � r�: (86)

The � = r+ solution corresponds to the late-time attractor, and the � = r� solution corre-

sponds to the N ! +1 limit. The amplitude of curvature uctuations is

P
1=2
R (k) =

2��3=2

2�

� (�)

� (3=2)

e��N

�

 
H

��c

!
; � �

����32 � �

���� ; (87)
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where �c is the �eld value at the end of ination, and N is the number of e-folds to the

end of ination when the uctuation crosses the horizon. The spectral index of curvature

uctuations is

n = 1 + 2�; (88)

so the � = r� asymptote gives an unacceptably large spectral index, n � 4. Tensor modes

are negligible in all cases.

ACKNOWLEDGEMENTS

I would like to thank David Wands, Edward Kolb, and Antonio Riotto for helpful con-

versations relating to this work.

This work was supported in part by DOE and NASA grant NAG5-2788 at Fermilab.

18



REFERENCES

[1] A. H. Guth, Phys. Rev. D 23, 347 (1981).

[2] A. D. Linde, Phys. Lett. 108B, 389 (1982).

[3] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).

[4] E. D. Stewart and D. H. Lyth, Phys. Lett. 302B, 171 (1993).

[5] J. Garc��a-Bellido and D. Wands, Phys. Rev. D. 54, 7181 (1996).

[6] L. P. Grishchuk and Yu. V. Sidorav, in Fourth Seminar on Quantum Gravity, eds M.

A. Markov, V. A. Berezin and V. P. Frolov (World Scienti�c, Singapore, 1988).

[7] A. G. Muslimov, Class. Quant. Grav. 7, 231 (1990).

[8] D. S. Salopek and J. R. Bond, Phys. Rev. D 42, 3936 (1990).

[9] J. E. Lidsey, et al., Rev. Mod. Phys. (1997), Report No. astro-ph/9508078.

[10] E. J. Copeland, E. W. Kolb, A. R. Liddle and J. E. Lidsey, Phys. Rev. D 48, 2529

(1993).

[11] A. R. Liddle, P. Parsons and J. D. Barrow, Phys. Rev. D 50, 7222 (1994).

[12] E. W. Kolb and S. L. Vadas, Phys. Rev. D 50, 2479 (1994).

[13] W. H. Kinney and K. T. Mahanthappa, Phys. Lett. B383 24 (1996).

[14] W. H. Kinney and K. T. Mahanthappa, Phys. Rev. D 53, 5455 (1996).

[15] A. D. Linde, Phys. Lett B259, 38 (1991).

[16] A. D. Linde, Phys. Rev. D 49 748 (1994).

[17] E. J. Copeland, et al., Phys. Rev. D 49, 6410 (1994).

[18] L. Randall, M. Solja�ci�c and A. H. Guth, Nucl. Phys. B472, 377 (1996).

19



[19] J. Garc��a-Bellido, A. D. Linde and D. Wands, Phys. Rev. D 54, 6040 (1996).

[20] J. Garc��a-Bellido and A. D. Linde, Report No. astro-ph/9701173 (unpublished).

[21] S. W. Hawking, Phys. Lett. 115B, 295 (1982).

[22] A. Starobinsky, Phys. Lett. 117B, 175 (1982).

[23] A. Guth and S. Y. Pi, Phys. Rev. Lett. 49, 1110 (1982).

[24] J. M. Bardeen, P. J. Steinhardt and M. S. Turner, Phys. Rev. D 28, 679 (1983).

[25] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).

[26] V. F. Mukhanov, JETP Lett. 41, 493 (1985).

[27] V. F. Mukhanov, Sov. Phys. JETP 67, 1297 (1988).

[28] I. J. Grivell and A. R. Liddle, Phys. Rev. D 54, 7191 (1996).

[29] C. L. Bennett et al. Report No. astro-ph/9601067 (unpublished).

[30] K. M. Gorski et al. Report No. astro-ph/9601063 (unpublished).

20


